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A method is proposed for finding the temperature and concentration fields 
associated with the flow of liquid in plane channels of arbitrary shape, 
having surface heat and mass sources at their walls. 

Problems of heat and mass transfer associated with the flow of liquid in plane 
channels of arbitrary shape occupied by three-dimensional separator grids or meshes 
are encountered in a number of practical applications, such as that of chemical cur- 
rent sources. The complicated geometrical structure of the channels makes it practic- 
ally impossible to obtain an exact solution of the hydrodynamic problem on the basis 
of the Navier-Stokes equation; thus the general problem of heat and mass transfer can- 
not be solved. If the channels are not very thick and the velocity of the liquid is 
low, and if, furthermore, the structure of the three-dimensional separator grid corre- 
sponds (within a reasonable approximation) to the structure of porous media, it is con- 
venient to restrict consideration to the two-dimensional flow pattern of the velocity 
averaged over the channel cross section, and to use the Darcy law for analyzing the 
motion [i]. If the coordinate system is referred to the principal axes of the perme- 
ability tensor, the equations of motion in the Darcy approximation assume the form 

a~ k~ ap a~ k~j ap 
u ~ -  - �9 ; u,j . . . . .  , ( I )  

Oty ~ a x  8 x  ~ a y  

a k~ + k ~ - y ) = o ,  (2) 

0 (1 0 , ) + 0 ( I  co+)=0, (3) 
a x  ky ax ~ kx ay 

where  ux and Uy a r e  t h e  v e l o c i t y  componen t s ;  p i s  t h e  p r e s s u r e ;  ~ i s  t h e  s t r e a m  f u n c -  
t i o n ;  kx and ky a r e  t h e  components  of  t h e  p e r m e a b i l i t y  t e n s o r  a l o n g  t h e  p r i n c i p a l  axes  
x and y ,  d e p e n d i n g  on t h e  t h i c k n e s s  of  t h e  s l o t  and t h e  s t r u c t u r e  o f  t h e  s e p a r a t o r ;  V 
i s  t h e  dynamic  viscosi ty .  I f  t h e  p e r m e a b i l i t i e m  kx and ky a r e  c o n s t a n t ,  Eqm. (1) and 
(3) may be g i v e n  t h e  a p p e a r a n c e  o f  L a p l a c e  e q u a t i o n s  by e x p r e s s i n g  them in  d i m e n s i o n -  
l e s s  form: 

u~--= a~b Op . - a~ Op (4) 
a~ - a ~ '  ~'~-- a~ - |  

a~> a ~  _ o, (5) 
ax~ + a~2 

ate-- + a~-- T = o. (6) 
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Fig. i. Leading edges representing the motion of a tinted liquid 
through a channel of complex shape: a) extended entry; b) point 
entry. 

Here x = x/X; y = (y/X) kx~/ky; u x = (pXhs/G)~x/ky; Uy = (pXhe/G)uy; ~ = (phs/G)~; p = 
(ph~/~G)~p, where X is the characteristic dimension in the x direction, h is the 
thickness of the slot, G is the rate of flow of the liquid through the chamber, p is 
the density of the liquid, and s is the porosity of the separator. 

The transformation so employed distorts the coordinate system and the velocity 
field in the same ratio 

ux _ ~ /  k x ux. x . =  ~ k~ x 
u~ ky tTy g ky ~ (7) 

Since the walls of the channel are impermeable to the liquid, the boundary condi- 
tion for Eq. (5) will be 3p/3n = 0. For Eq. (6) the stream function ~ is given at the 
boundary; the strengths of the sources and sinks have to be given at the points of 
liquid entry and exit and in the present steady-state problem their total strength 
should be zero. 

Let us consider the problem of heat and mass transfer during the flow of a liquid 
in channels having surface heat or mass sources or sinks at their walls. Let us in- 
troduce these sources into the equations of heat and mass transfer, integrating the 
equations over the thickness of the slot. Neglecting the molecular transfer (heat con- 
duction or diffusion) by comparison with convective transfer, we obtain an equation de- 
termining the change in the temperature or concentration averaged over the channel 

cross section: 

u d g  __ ~ ( g )  -. ( 8 )  
ds Whs 

Here g denotes the temperature T or concentration c; ~ is a source depending on T or c; 
s is the direction along the stream line; W is a coefficient adjusting the dimensions 

of Eq. (8). 

In Eq. (8) the variables are separated. Thus, if a particle of liquid passes into 
the channel at the point Qo, having a temperature (or concentration) go, the tempera- 
ture (concentration) of the liquid at the point Q may be found from the equation 

g Q 

S i S ds 
(g) wA~ u 

go Qo 

The integral on the right-hand side of (9) determines the time which elapses during 
the motion of the liquid from the point of entry Qo to the point Q and is calculated 
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Fig. 2. Leading edges of liquid in a 
rectangular channel. Continuous 
curves derived from a model, broken 
curves by calculation. 
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Fig. 3. Nonuniformity coefficient of 
the motion as a function of the geom- 
etry of the rectangular channel. 

along the stream line. By using Eq. (7) we 
may transform to the dimensionless time of 
motion in the planes x, y: 

Q 

(Qo, Q) = [ 
d 
Q0 

ds 9Xeh 
u G 

ky 
I. @~ Q).(lO) 

It follows from Eq. (9) that, if the density 
of the heat or mass sources depends solely 
on the temperature or condentration, the 
conditions at the entry remain constant, and 
molecular transfer processes are neglected, 
the isotherms or lines of equal concentra- 
tions coincide with the lines of equal times, 
i.e., the geometrical locus T(Qo, Q) = const 
of the points reached by the liquid par- 
ticles after identical intervals of time. 
Thus, in order to calculate the temperature 
and concentration fields there is no need to 
know the velocity field; we only have to de- 
termine the integrated characteristics 
(lines of equal times), since every point in 
space is uniquely linked to the time of 
motion of the liquid particle from the point 
of entry, there being no vortices in the 
channel. 

Let us consider two methods of determin- 
ing the lines of equal times not requiring 
any determination of the velocity field: i) 
a computing method, using conformal trans- 
formations; 2) a physical simulation tech- 
nique. If the liquid enters and leaves the 
chamber through holes of small diameter d, 
so that d/X << i, these may be regarded as 
points. In this case, in order to calculate 
the lines of equal times it is convenient 
to transform the plane z = x + iy conformal- 
!y into the upper half plane Im m > 0, so 

that the point of entry Qo transforms to ~ = 0 and the exit point to m = ~. The stream 
lines at the plane m then become straight lines, and instead of calculating the curvi- 
linear integral (i0) we may integrate along straight stream lines. The solutions of 
Eqs. (5) and (6) in the m plane take the form 

! 
p = const 

2x 
1 I ~ -  
2 

- -  I n R  2, 

X 

(il) 

' (12) 

where R and X are the polar coordinates in the plane ~. Using Eqs. (i), (4), (Ii), and 
(12), we obtain an expression for the dimensionless time of motion 

"~ (Qo, Q) = ~ ,[ If' (R, X = consO# RdR, (13) 
0 

where z = f(~); ~ = ~(z). 
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By way of example, let us consider a channel of rectangular shape with a symmet- 
rical entry and exit. In this case the conformal transformation is effected by means 
of an elliptical integral of the first kind f(~) = cF(n, m) [2]. From Eq. (13) we ob- 
tain a formula for determining the line of equal times 

m(#) 

j ' RdR 
(Qo, Q) = ~c2 (I - -  2R2 cos22)r -~- R4)(1 - - 2 n 2 R 2 c o s 2 2 ~ R  2 " -  n~R~) ' 

0 

(14) 

where n and c are constants determined by the ratio of the sides of the rectangle ~ = 
(~/kx) i/2 (X/Y). 

The simulation method is effective in channels of complicated geometrical shape 
involving the extended entry and exit of the working substances, in which case finding 
the lines of equal times by calculation involves serious computing difficulties. The 
lines of equal times are determined by using a model of the channel made of transparent 
material, recording the progress of the leading edge of a tinted liquid in a motion- 
picture camera, and noting the corresponding times. A typical picture of the configura- 
tions of the lines at the leading edges in channel of complicated shape is presented in 
Fig. I. The lines of equal times obtained by calculation from Eq. (14) are compared 
with those given by the simulation process in Fig. 2. We see from this figure that 
both methods lead to the same results, so confirming the validity of the assumptions 
made. 

In order to provide a quantitative expression for the nonuniformity of the motion 
of the liquid in the chamber of a fuel cell, we introduce the nonuniformity coefficient 
of the motion • equal to the ratio of the minimum time to the average time of motion of 
the liquid particles in the channel: 

• ~in (15) 
Tav 

Figure 3 shows the coefficient z as a function of the ratio of the sides i/~ for 
a rectangular channel. Clearly on the same principle we may introduce a coefficient 
for the nonuniformity of the temperature and concentration fields. 

i. 

2. 
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